

Development and validation of a real-time PCR assay for the identification of *Xanthomonas* axonopodis pv. phaseoli and *Xanthomonas* axonopodis pv. phaseoli var. fuscans isolates

Validation report, July 2016

ISHI VALIDATION REPORTS

This ISHI validation study has been conducted to determine the fitness of the described method for its intended purpose according to common practices in effect at the time.

DISCLAIMER

ISF cannot guarantee that laboratories following the protocol described herewith will obtain similar results. Many factors, such as staff skills, laboratory equipment and conditions, reagents and sampling methods can influence the results. Consequently, in case of any litigation ISF will not accept any liability on the use of these tests.

Published by:

International Seed Federation (ISF)

Reposoir 7, 1260 Nyon, Switzerland

Developed by ISHI

All rights reserved - @2025 ISF

Development and validation of a real-time PCR assay for the identification of Xanthomonas axonopodis pv. phaseoli and Xanthomonas axonopodis pv. phaseoli var. fuscans isolates

Thomas Baldwin
Vilmorin SA
July 2016

Development and validation of a real-time PCR assay for the identification of Xanthomonas axonopodis pv. phaseoli and Xanthomonas axonopodis pv. phaseoli var. fuscans isolates

Introduction

The current ISTA method for the detection of *Xanthomonas axonopodis* pv. *phaseoli* and *Xanthomonas axonopodis* pv. *phaseoli* var. *fuscans* (Xap) on bean seeds is described in method 7-021 version 3.0. The identity of a suspect isolate is confirmed by either a pathogenicity test or a PCR test. A comparison study of the pathogenicity test and specific primers (Audy et al., 1994) was previously carried out in a collaboration between ISTA, ANSES, INRA and ISHIveg. This study demonstrated that the ISTA 7-021v3.0 pathogenicity test and the Audy et al. (1994) primers are both suitable confirmation tools. The Audy et al. (1994) p7X4c and p7X4e primers amplify a 730bp fragment present in the plasmid and genomic DNA of Xap strains.

According to the ISHI-veg Best Practices for Molecular Techniques in Seed Health Tests (ISF, 2014) an internal amplification control is essential for identification of single isolate cultures by PCR. An internal amplification control (IAC) is a non-target nucleic acid sequence present in the same sample reaction tube which is co-amplified simultaneously with the target sequence. IAC controls are already used in other ISTA and ISHI-veg methods.

One approach is to combine a pathogen specific Taqman probe with an IAC Taqman probe specific to conserved bacterial DNA. An example of this approach is described in the ISHI-veg method v4.3 for the detection of Clavibacter on tomato seed. Suspect isolates are identified with Cmm specific Taqman probes and an IAC is included in each PCR tube with a probes adapted from Wu et al. (2008). The use of a real-time PCR assay facilitates the interpretation of results and removes the added complexity and safety hazards of gel electrophoresis with ethidium bromide.

Project objectives

- Design a new Taqman assay based on the same target of the primers described by Audy *et al.* (1994)
- Integrate the IAC Tagman assay adapted from Wu et al. (2008)
- Validate the combined Xap-Taqman/IAC assay on the DNA extracts of isolates used in the ISTA/ISHI comparative test (Grimault et al., 2012).

Materials and Methods

Conventional PCR

An Eppendorf Mastercycler gradient was programmed for the conventional PCR: 94°C, 2 minutes (min); 35 x (94°C, 30 seconds (sec); 56,5°C - 63,2°C, 30 sec; 72°C, 30 sec); 72°C, 1min. All PCR reactions were done in 25µl reactions: 5µl buffer, 1.5µl MgCl2, 0.2µl Go Taq polymerase (Promega, USA), 0.25µl dNTPs (GE Healthcare, UK), 1µl of each primer at 10µM, and 11.05µl water. 5µl of isolate suspension was added to each PCR.

Tagman reaction conditions

The initial validation Real-time PCR reactions were done in a final volume of $15\mu l$ containing: 7.5 μl Taqman® Universal Master Mix II (Life Technologies, USA), 0.6 μl of each primer at $10\mu M$ (0.4 μM final concentration), 0.24 μL probe $5\mu M$ (final concentration 0.08 μM) and water to $13\mu l$. $2\mu l$ of each isolate suspension was added to each PCR. The cycling program was applied as described in the mastermix protocol: $95^{\circ}C$, 10 min; 40 x ($95^{\circ}C$, 15 sec; $60^{\circ}C$, 1 min).

The first series of reactions with the Wu IAC were also done in final volume of 15µl containing: 7.5µl Taqman® Universal Master Mix II (Life Technologies, USA), 0.6µl of each Xap primer at $10\mu M$ (0.4µM final concentration), 0.24µL Au1FAM probe 5µM (final concentration 0.08µM), 0.3µl of each Wu primer and probe at $10\mu M$ (final concentration 0.2µM) and water to $13\mu l$. 2µl of each isolate DNA extract was added to each PCR. The cycling program was applied as described in the mastermix protocol: 95°C, 10 min ; 40 x (95°C, 15 sec ; 60°C, 1 min).

The second series of PCR reactions on fresh isolates were done as described above and additionally in final volumes of $25\mu l$ containing: $:12.5\mu l$ Taqman® Universal Master Mix II (Life Technologies, USA), $1\mu l$ of each Xap primer at $10\mu M$ ($0.4\mu M$ final concentration), $0.4\mu L$ Au1FAM probe $5\mu M$ (final concentration $0.08\mu M$), $1\mu l$ of each Wu primer and $0.25\mu l$ of each Wu probe at $10\mu M$ (final concentrations of $0.4\mu M$ and $0.1\mu M$ for the primers and probes respectively) and water to $20\mu l$. $5\mu l$ of each isolate suspension was added to each PCR. The cycling program was applied as described in the mastermix protocol: $95^{\circ}C$, $10 \, min$; $40 \, x$ ($95^{\circ}C$, $15 \, sec$; $60^{\circ}C$, $1 \, min$).

Oligonucleotides

Table Primer and probe sequences

Primer	Sequence (5'-3')	5'	3'	Amplicon	Reference
Name		Modification	Modification	size	
p7X4c	GGCAACACCCGATCCCTAAACAGG			720 hn	Audy et al.
p7X4e	CGCCGGAAGCACGATCCTCGAAG			730 bp	1994
AuF1	ACGGCCGGCGTCTTGTCTCT			1.40 hm	
AuR1	GCCGAGGTCCGCGAGATTCT			148 bp	This study
Au1FAM	CGTCTCTGGCTTGACTGCGGTCGC	FAM	BHQ1		
WuF	CAACGCGAAGAACCTTACC				
WuR	ACGTCATCCCCACCTTCC				Wu et al.
WuPr1	ACGACAACCATGCACCACCTG	Yakima	QSY		2008
WuPr2	ACGACAGCCATGCAGCACCT	Yellow	Q3 I		

Results

Sequencing of Xap isolates on the Audy target and design of a Taqman assay

The p7X4c and p7X4e primers were used to amplify 730bp fragment from 4 independent Xap isolates isolated from seed and from plants. The PCR products were checked for specific amplification by gel electrophoresis and were sequenced in both directions with the same PCR primers. After trimming and alignment 624bp of sequence data were obtained for each isolate. The identity of sequences was 100% between the 4 isolates.

The 624bp sequence was used to identify suitable sequences for Taqman primers and probes. Two 20bp primers were designed and named AuF1 and AuR1 which have annealing temperatures of 60°C and amplify a 148bp fragment. A 24bp Taqman probe named Au1FAM was also designed with a predicted melt temperature of 68°C. The primers without the probe were first tested in conventional PCR at three annealing temperatures on three Xap isolates and three lookalike non-Xap isolates from bean seeds. Amplification was specific at all the tested temperatures (Figure 1).

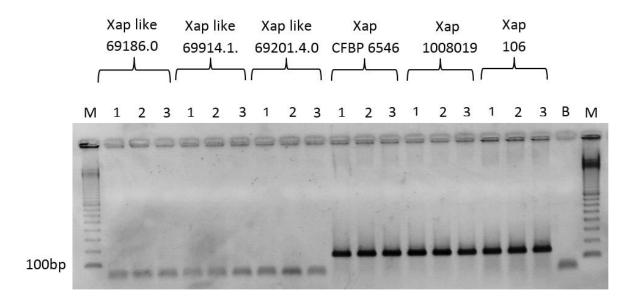


Figure 1 Agarose gel electrophoresis of DNA amplified with the primers AuF1 and AuR1

M: 100bp marker; B: Water control; Annealing temperatures 1: 58°C; 2: 60°C; 3: 63°C

A real-time PCR was done with the addition of the Au1FAM Taqman probe on a larger collection of 15 Xap look-alike isolates from bean seeds, 7 other *Xanthomonas* pathogens and 25 Xap isolates from the Vilmorin collection. All the Xap isolates were identified before Ct20, two lookalike strains showed Ct values between 35-40 cycles. With the application of a Ct35 cut-off, these real-time PCR results demonstrate the 100% diagnostic and analytical sensitivity of the Taqman assay (Table 1).

Table 1 Taqman real-time PCR results on a collection of Xap and lookalike isolates

Isolate ID	Ct	Isolate ID	Ct	
xap like 69186.0	37.54	xap 1008019	15.62	
xap like 69914.1.3	No Ct	xap 1007014	14.86	
xap like 69201.4.0	No Ct	xap 1008017	13.54	
xap like 69253.5.1	No Ct	xap J81747.1.2	15.54	
xap like 69276.10.0	No Ct	xap I70296.1.0	13.99	
xap like 69193.2.0	No Ct	xap i72066.3	13.5	
xap like 69189.2	No Ct	xap 717626.1	17.62	
xap like 69208.6.1	No Ct	xap 45.5	14.13	
xap like 69270.0.2	No Ct	xap J426542.2	13.78	
xap like 69176.1.1	39.74	xap 716806.1	15.34	
xap like 69284.6.0.1 No Ct		xap 15.1p	13.88	
xap like 77037.4.0	No Ct	хар 7.1 р	14.37	
xap like 69297.0 No Ct		xap 59102.2	12.92	
xap like 69311.0	No Ct	xap 3.1 p	13.63	
xap like 70357.5.0	No Ct	xap 8.2 p	17.87	
CFBP Xe 6864	No Ct	xap 4.2 p	12.9	
CFBP Xp 7293	No Ct	xap 277401	13.72	
CFBP Xv 4645 No Ct		xap 58.6 d2b	14.18	
CFBP Xg 6822 No Ct		xap 20.1 p	14.03	
CFBP Xcr 5829	No Ct	хар 17.1 р	13.85	
Xhc 539	No Ct	xap 106	19.6	
Xcc 645.2	No Ct	xap 107	13.89	
xap CFBP 6546	16.52	xap 108	14.99	
xap J95292 6.1.1 14.65		Negative control No Ct		

Validation on the collection of comparative test DNA extracts of the Xap specific Taqman assay with a Wu-derived IAC

The 60 isolate DNA extract collection tested in the ISTA/ISHI comparative test and stored in the bio-GEVES laboratory was sent to Vilmorin in order to validate the Audy derived Taqman assay. An internal amplification control based on the primers and probes described by Wu et al. (2008) was added to the reaction mix. The amplification curves obtained with the Au1FAM Taqman probe and the Wu-Yakima Yellow Taqman probes are illustrated in Figure 2a and 2b.

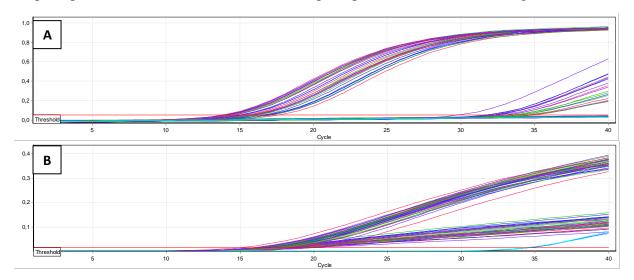


Figure 2 Au1FAM (A) and Wu-Yakima Yellow (B) amplification curves

The results obtained with the duplex Taqman reactions are presented in Table 2. Samples X1-30 are target Xap DNA extracts, X31 is a *X. axonopodis* pv. *dieffenbachiae* isolate also detected with the Audy primers of the ISTA method. All but one of the target extracts were detected at fewer than 20 cycles (<Ct20). The extract X9 was only detected with the new Taqman assay at Ct34.9. The DNA extract X9 was also not detected with the original PCR assay. The DNA extract X24 was not detected with the original Audy PCR assay, but is detected with the new Taqman assay. However, in the ISTA validation report it is indicated that extracts X9 and X24 were excluded from the analysis because X9 was not pure and there was a mistake during DNA preparation with X24 (Grimault et al. 2012).

Samples 32-60 are non-target DNA extracts. Several of the non-target extracts show a late amplification between Ct30-35. Traces of amplifications were also observed in the comparative test on some of the non-target DNA extracts (Appendix 1 comparison with the 2011 comparative test results), this may be due to non-specific amplification or traces of contamination in the extract solutions.

Table 2 Ct values obtained from real-time PCR tests on the comparative test DNA collection

	Audy-Wu					
	Duplex					
Name	Audy Ct WU					
X1	16.04	16.82				
X2	13.98	15.77				
X3	14.16	16.08				
X4	15.06	17.54				
X5	17.66	16.73				
X6	17.04	18.75				
X7	15.9	16.86				
X8	16.88	17.17				
X9	34.93	18.61				
X10	15.2	15.6				
X11	15.86	15.33				
X12	16.94	15.55				
X13	15.43	17.74				
X14	15.87	16.73				
X15	14.5	16.83				
X16	17.13	16.28				
X17	16.06	15.88				
X18	15.99	15.85				
X19	16.17	16.42				
X20	16.52	15.67				
X21	13.85	16.45				
X22	14.16	17.71				
X23	14.28	15.66				
X24	15.17	15.39				
X25	14.62	15.72				
X26	13.93	15.36				
X27	15.71	17.0				
X28	14.12	16.84				
X29	15.65	15.78				
X30	14.57	16.38				
X31	17.12	17.2				
X32	32.25	15.66				
NA= No amplification						

	Audy-Wu			
Nama	Duplex	WU		
Name	Audy Ct			
X33	32.18	15.28		
X34	34.76	15.89		
X35	NA	15.79		
X36	NA	16.95		
X37	32.97	17.21		
X38	32.53	17.77		
X39	33.42	16.86		
X40	33.89	16.24		
X41	NA	13.89		
X42	NA	14.89		
X43	NA	14.85		
X44	32.2	15.83		
X45	34.54	15.62		
X46	33.06	16.27		
X47	34.08	15.75		
X48	31.8	16.14		
X49	NA	15.53		
X50	NA	15.23		
X51	NA	15.94		
X52	NA	16.19		
X53	NA	14.91		
X54	NA	14.95		
X55	NA	15.63		
X56	NA	16.1		
X57	NA	16.49		
X58	NA	16.59		
X59	34.78	16.18		
X60	31.72	15.85		
Хар	14.26	15.72		
Хсс	29.8	15.23		
Xcv	33.74	16.69		
Water	NA	33.73		

NA= No amplification

The 14 non-target isolates showing late amplification results (X32, X33, X34, X37, X38, X39, X40, X44, X45, X46, X47, X48, X59, X60) were re-tested on fresh isolate cultures. PCR reactions were done in reactions of $15\mu l$ and $25\mu l$. In both reaction conditions the PCR results demonstrate the specificity of the Audy Taqman assay. None of the non-target isolates were amplified with the Audy Taqman assay (Figures 3A and 3C; Table 3). The amplification curves obtained with the Wu assay were superior in the $25\mu l$ reaction conditions (Figure 3B) when compared with the $15\mu l$ reaction conditions (Figure 3D).

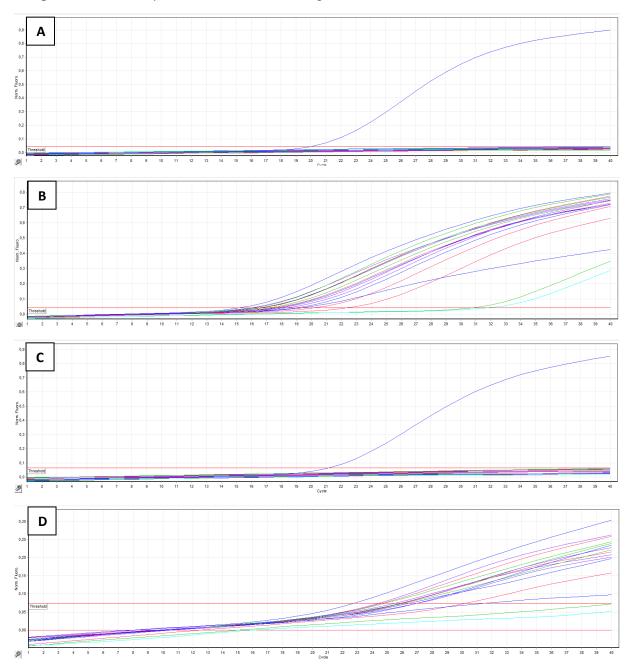


Figure 3 Au1FAM (A) and Wu-Yakima Yellow (B) amplification curves from 25 μ l reactions; Au1FAM (C) and Wu-Yakima Yellow (D) amplification curves from 15 μ l reactions

Table 3 Ct values obtained from real-time PCR tests on fresh isolates from the comparative test isolate collection

X33 NA 15.93 X34 NA 16.15 X37 NA 15.19 X38 NA 22.40 X39 NA 16.47 X40 NA 17.17 X44 NA 17.66 X45 NA 17.44 X46 NA 17.88 X47 NA 16.73 X48 NA 18.92 X59 NA 20.18 X60 NA 18.37 Xap 19.93 19.32					
Name Audy Ct WU X32 NA 16.58 X33 NA 15.93 X34 NA 16.15 X37 NA 15.19 X38 NA 22.40 X39 NA 16.47 X40 NA 17.17 X44 NA 17.66 X45 NA 17.44 X46 NA 17.88 X47 NA 16.73 X48 NA 18.92 X59 NA 20.18 X60 NA 18.37 Xap 19.93 19.32		Audy-Wu			
X32 NA 16.58 X33 NA 15.93 X34 NA 16.15 X37 NA 15.19 X38 NA 22.40 X39 NA 16.47 X40 NA 17.17 X44 NA 17.66 X45 NA 17.44 X46 NA 17.88 X47 NA 16.73 X48 NA 18.92 X59 NA 20.18 X60 NA 18.37 Xap 19.93 19.32		Duplex (25µl)			
X33 NA 15.93 X34 NA 16.15 X37 NA 15.19 X38 NA 22.40 X39 NA 16.47 X40 NA 17.17 X44 NA 17.66 X45 NA 17.44 X46 NA 17.88 X47 NA 16.73 X48 NA 18.92 X59 NA 20.18 X60 NA 18.37 Xap 19.93 19.32	Name	Audy Ct	WU		
X34 NA 16.15 X37 NA 15.19 X38 NA 22.40 X39 NA 16.47 X40 NA 17.17 X44 NA 17.66 X45 NA 17.44 X46 NA 17.88 X47 NA 16.73 X48 NA 18.92 X59 NA 20.18 X60 NA 18.37 Xap 19.93 19.32	X32	NA	16.58		
X37 NA 15.19 X38 NA 22.40 X39 NA 16.47 X40 NA 17.17 X44 NA 17.66 X45 NA 17.44 X46 NA 17.88 X47 NA 16.73 X48 NA 18.92 X59 NA 20.18 X60 NA 18.37 Xap 19.93 19.32	X33	NA	15.93		
X38 NA 22.40 X39 NA 16.47 X40 NA 17.17 X44 NA 17.66 X45 NA 17.44 X46 NA 17.88 X47 NA 16.73 X48 NA 18.92 X59 NA 20.18 X60 NA 18.37 Xap 19.93 19.32	X34	NA	16.15		
X39 NA 16.47 X40 NA 17.17 X44 NA 17.66 X45 NA 17.44 X46 NA 17.88 X47 NA 16.73 X48 NA 18.92 X59 NA 20.18 X60 NA 18.37 Xap 19.93 19.32	X37	NA	15.19		
X40 NA 17.17 X44 NA 17.66 X45 NA 17.44 X46 NA 17.88 X47 NA 16.73 X48 NA 18.92 X59 NA 20.18 X60 NA 18.37 Xap 19.93 19.32	X38	NA	22.40		
X44 NA 17.66 X45 NA 17.44 X46 NA 17.88 X47 NA 16.73 X48 NA 18.92 X59 NA 20.18 X60 NA 18.37 Xap 19.93 19.32	X39	NA	16.47		
X45 NA 17.44 X46 NA 17.88 X47 NA 16.73 X48 NA 18.92 X59 NA 20.18 X60 NA 18.37 Xap 19.93 19.32	X40	NA	17.17		
X46 NA 17.88 X47 NA 16.73 X48 NA 18.92 X59 NA 20.18 X60 NA 18.37 Xap 19.93 19.32	X44	NA	17.66		
X47 NA 16.73 X48 NA 18.92 X59 NA 20.18 X60 NA 18.37 Xap 19.93 19.32	X45	NA	17.44		
X48 NA 18.92 X59 NA 20.18 X60 NA 18.37 Xap 19.93 19.32	X46	NA	17.88		
X59 NA 20.18 X60 NA 18.37 Xap 19.93 19.32	X47	NA	16.73		
X60 NA 18.37 Xap 19.93 19.32	X48	NA	18.92		
Xap 19.93 19.32	X59	NA	20.18		
	X60	NA	18.37		
Water NA 30.71	Хар	19.93	19.32		
	Water	NA	30.71		

NA= No amplification

Conclusion

The newly designed Audy derived Taqman assay in combination with an IAC appears to be a potentially suitable replacement for the PCR primers described in the current ISTA method 7.021.

Acknowledgements

The development of the Audy derived Taqman assay was done by Laëtitia Larvor during her Master degree project in the Vilmorin laboratory. The DNA extracts and the data from the comparative test were supplied by Mathieu Rolland (bio-GEVES). The isolates were supplied by Valérie Grimault (SNES-GEVES).

References

Audy, P., Laroche, A., Saindon, G., Huang, H. C. & Gilbertson, R. L. (1994). Detection of the bean common blight bacteria, *Xanthomonas campestris* pv. *phaseoli* and *X.c. phaseoli* var. *fuscans*, using the Polymerase Chain Reaction. *Molecular Plant Pathology*, **84**, 1185–1192.

Grimault, V., Olivier, V., Rolland, M., Darrasse, A. & Jacques, M.A. (2012). ISTA/ISHI comparative test for method 7-021 modification for the identification of *Xanthomonas axonopodis* pv. *phaseoli* (*sensu* Vauterin *et al.*, 2000) on bean seeds. 45-54. *Method Validation Reports on Rules Proposals for the International Rules for Seed Testing 2014 Edition*. International Seed Testing Association, Bassersdorf, Switzerland.

ISF (2014) ISHI-veg Best Practices for Molecular Techniques in Seed Health Tests, http://www.worldseed.org/wp-content/uploads/2016/01/ISHI-Veg_BestPractices_MolecularTechniques_2014.pdf

Wu Y.D., Chen L.H., Wu X.J., Shang S.H., Lou J.T., Du L.Z., Zheng Y.Z.(2008) Gram-Stain-Specific-Probe-Based Real-Time PCR for Diagnosis of Bacterial Neonatal Sepsis. Journal of Clinical Microbiology 46(8): 2316-2319.

Appendix 1 Comparison of the Audy derived Taqman-Wu duplex results with the comparative test results

		Audy-Wu Du	plex			Test Au	dy 2011			Test Toth 201
Name	Туре	Audy Ct	WU	Lab1	Lab2	Lab3	Lab4	Lab5	Lab6	
X1	Unknown	16,0	16,8	1	1	1	1	1	1	0
X2	Unknown	14,0	15,8	1	1	1	1	1	1	1
Х3	Unknown	14,2	16,1	1	1	1	1	1	1	1
X4	Unknown	15,1	17,5	1	1	1	1	1	1	1
X5	Unknown	17,7	16,7	1	1	1	1	1	1	0
Х6	Unknown	17,0	18,8	1	1	1	1	1	1	0
X7	Unknown	15,9	16,9	1	1	1	1	1	1	1
X8	Unknown	16,9	17,2	1	1	1	1	1	1	0
Х9	Unknown	34,9	18,6	0	0	0	0	0	0	0
X10	Unknown	15,2	15,6	1	1	1	1	1	1	0
X11	Unknown	15,9	15,3	1	1	1	1	1	1	0
X12	Unknown	16,9	15,6	1	1	1	1	1	1	0
X12	Unknown	15,4	17,7	1	1	1	1	1	1	0
X13	Unknown	15,4		1	1	1	1	1	1	0
X14 X15	Unknown		16,7			-				
		14,5	16,8	1	1	1	1	1	1	0
X16	Unknown	17,1	16,3	1	1	1	1	1	1	0
X17	Unknown	16,1	15,9	1	1	1	1	1	1	0
X18	Unknown	16,0	15,9	1	1	1	1	1	1	0
X19	Unknown	16,2	16,4	1	1	1	1	1	1	0
X20	Unknown	16,5	15,7	1	1	1	1	1	1	0
X21	Unknown	13,9	16,5	1	1	1	1	1	1	1
X22	Unknown	14,2	17,7	1	1	1	1	1	1	1
X23	Unknown	14,3	15,7	1	1	1	1	1	1	1
X24	Unknown	15,2	15,4	0	0	0	0	0	0	1
X25	Unknown	14,6	15,7	1	1	1	1	1	1	1
X26	Unknown	13,9	15,4	1	1	1	1	1	1	1
X27	Unknown	15,7	17,0	1	1	1	1	1	1	1
X28	Unknown	14,1	16,8	1	1	1	1	1	1	1
X29	Unknown	15,7	15,8	1	1	1	1	1	1	1
X30	Unknown	14,6	16,4	1	1	1	1	1	1	1
X31	Unknown	17,1	17,2	1	1	1	1	1	1	0
X32	Unknown	32,3	15,7	0	trace	0	0	0	0	0
X33	Unknown	32,2	15,3	0	trace	0	0	0	0	0
X34	Unknown	34,8	15,9	0	0	0	0	0	0	0
X35	Unknown	,-	15,8	0	0	0	0	0	0	0
X36	Unknown		17,0	0	0	0	0	0	0	0
X37	Unknown	33,0	17,2	0	0	0	0	0	0	0
X38	Unknown	32,5	17,8	0	0	0	0	0	0	0
X39	Unknown	33,4	16,9	0	trace	0	0	0	0	0
X40	Unknown	33,9		0	0	0	0	0	0	0
X40 X41	Unknown	33,9	16,2							1
			13,9	0	0	0	0	0 V	0	0
X42 X43	Unknown		14,9	0	0	0	0	X	0	0
		22.2	14,9	0	0 trace	0	0	0	0	0
X44	Unknown	32,2	15,8	0	trace	0	0	0	0	
X45	Unknown	34,5	15,6	0	0	0	0	0	0	0
X46	Unknown	33,1	16,3	0	trace	0	0	0	0	0
X47	Unknown	34,1	15,8	0	trace	0	0	0	0	0
X48	Unknown	31,8	16,1	0	trace	0	0	0	0	0
X49	Unknown		15,5	0	0	0	0	0	0	0
X50	Unknown		15,2	0	0	0	0	0	0	0
X51	Unknown		15,9	0	0	0	0	0	0	0
X52	Unknown		16,2	0	0	0	0	0	0	0
X53	Unknown		14,9	0	0	0	0	0	0	0
X54	Unknown		15,0	0	0	0	0	0	0	0
X55	Unknown		15,6	0	0	0	0	0	0	0
X56	Unknown		16,1	0	0	0	0	0	0	0
X57	Unknown		16,5	0	0	0	0	0	0	0
X58	Unknown		16,6	0	0	0	0	0	0	0
X59	Unknown	34,8	16,2	0	0	0	0	0	0	0
X60	Unknown	31,7	15,9	0	0	0	0	0	0	0
T+ Xap	Unknown	14,3	15,7	1	1	1	1	1	1	1
T- Xcc	Unknown	29,8	15,2	0	trace	0	0	0	0	0