

# Detection of Tomato mottle mosaic virus (ToMMV) in Tomato and Pepper Seed

**NOVEMBER 2025** 

Developed by ISHI

All rights reserved - @2025 ISF



# Detection of Tomato mottle mosaic virus (ToMMV) in Tomato and Pepper Seed

**Crop:** Tomato (*Solanum lycopersicum*), Pepper (*Capsicum annuum*)

**Pathogen(s):** Tomato mottle mosaic virus (ToMMV, now *Tobamovirus maculatessellati*)

**Version:** 1.0 (November 2025)

## **PRINCIPLE**

Detection of Tomato mottle mosaic virus (ToMMV, now *Tobamovirus maculatessellati*) in tomato and pepper seed is done by a seed extract reverse transcriptase (RT-)qPCR assay (SE-qPCR). If no virus is detected the seed lot is considered free from ToMMV. As the ToMMV-specific SE-qPCR assay detects both infectious virions and non-infectious virus particles, a positive SE-qPCR only demonstrates the presence of ToMMV RNA, and the seed lot is deemed suspect for the presence of ToMMV. See Figure 1 for the method process flow.

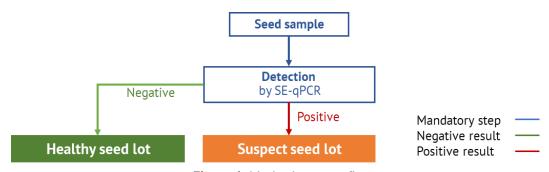



Figure 1. Method process flow.

# **METHOD VALIDATION**

The SE-gPCR assay has been validated by ISHI (Chen et al., 2025).

# **RESTRICTIONS ON USE**

Before using this protocol routinely, it is necessary to verify its performance, especially when material and consumables from different suppliers are used. Technical details on the reagents/material used in the validation study (e.g., supplier's information) are provided in the protocol and the validation report.

This method is suitable for testing untreated seed.

It is also suitable for testing seed that has been treated using physical (e.g., hot water) or chemical (e.g., acid extraction, calcium or sodium hypochlorite, tri-sodium phosphate) processes with the aim of disinfestation/disinfection, provided that any residue, if present, does not influence the assay. It is the responsibility of the user to check for inhibition by experimental comparisons or other means.



This test method has not been validated for seed treated with protective chemicals or biological substances. If treated seed is tested using this method, it is the responsibility of the user to determine empirically (through analysis, sample spiking, or experimental comparisons) whether the protective chemicals or biological substances have an effect on the method results.

Note that tobamoviruses, including ToMMV, are highly abundant and persistent in various environments. Environmental ToMMV, found in sources such as wastewater and dust within seed processing facilities, can easily cause false positive results when using this highly sensitive SE-qPCR assay (Rothman and Whiteson, 2022; Schoen *et al.*, 2023). To mitigate this risk, it is essential to incorporate adequate negative controls and perform routine dust swabbing in seed processing areas to monitor potential contamination.

# **METHOD EXECUTION**

To ensure process standardization and valid results, it is strongly recommended to follow the <a href="Mest Practices for Seed Health Tests">Best Practices for Seed Health Tests</a> developed by ISHI.

Note that this protocol can also be used to identify ToMMV after a positive ELISA in ISHI's tests <u>Detection of Infectious Tobamoviruses in Tomato/Pepper Seed</u>. Note that a new seed sample should be used in this case.

### SAMPLE AND SUBSAMPLE SIZE

The recommended minimum sample size is 3,000 seeds with a maximum subsample size of 1,000 seeds for tomato and 500 for pepper.

# **REVISION HISTORY**

| Version | Date          | Changes (minor editorial changes not indicated) |  |
|---------|---------------|-------------------------------------------------|--|
| 1.0     | November 2025 | First version of the protocol                   |  |



# Protocol for Detection of ToMMV in Tomato and Pepper Seed

# I. PRE-SCREEN BY SEED EXTRACT RT-qPCR

For PCR methods, in-house method optimization is often necessary, see <u>Best Practices for PCR Assays in Seed Health Tests</u>.

# **Materials**

- Seed extraction buffer (Table I.1)
- Grinder (e.g., Geno/Grinder® 2010 (Cole-Parmer®, Vernon Hills, IL))
- 50 mL conical shaped tubes
- Vortex mixer
- RNA purification kit and equipment (e.g., RNeasy PowerPlant Kit (Qiagen, Hilden, Germany))
- RT-qPCR reagents, primers (Table I.2) and equipment
- Controls (Table I.3)
- Centrifuges
- Laboratory disposables

**Table I.1.** Seed extraction buffer<sup>a</sup> (Guanidine-based buffer (GH+)).

| Compound                        | Amount/L |
|---------------------------------|----------|
| Guanidine-hydrochloride         | 573 g    |
| NaOAc buffer (4 M) <sup>b</sup> | 50 mL    |
| EDTA                            | 9.3 g    |
| PVP-10                          | 25 g     |

<sup>&</sup>lt;sup>a</sup> Alternative buffers are described in the validation report of Chen et al., 2024.

**Table I.2.** Primer and probe sequences and references.

| Name       | Target             | Sequence (5' – 3') (fluorophores as an example)    | Source                       |
|------------|--------------------|----------------------------------------------------|------------------------------|
| CaTa9 Fw   | Tababa)/           | ATGTGGAGGAACCCTCTATGA                              | Hiddink of                   |
| CaTa9 Pr   | ToMMV<br>Replicase | 6FAM – TCAATGGCCCGTGGTGAGTTACAA - BHQ1             | Hiddink <i>et</i> al., 2019  |
| CaTa9 Rv   | Керпсазс           | AATCTCCTCGCTCCTTGTAAAC                             | ut., 2017                    |
| ToMMV2-Fw  | ToMMV              | GAAACATTGGATGCCACTCG                               | Schoen <i>et</i>             |
| ToMMV2-Pr  | CP and             | VIC – CGATGCTACGGTTGCGATCAGGTC - BHQ1              | al., 2023                    |
| ToMMV2-Rv  | 3'UTR              | CTCTGGTTGTAGAAACCTGTTCC                            | ut., 2023                    |
| CSP1572 Fw | ToMMV              | CCCGACTACAGCCGAAACAT                               | Moble of                     |
| CSP1572 Pr | CP and             | VIC – TGCCACTCGCAGAGTGGACGATGCTACG - BHQ1          | Mehle <i>et</i><br>al., 2024 |
| CSP1572 Rv | 3'UTR              | TTAACAGCGGACCTGATCGC                               | ut., 202 i                   |
| Nad5-F     | nad5               | GATGCTTCTTGGGGCTTCTTGTT                            | Menzel <i>et</i>             |
| Nad5-R     | - plant            | CTCCAGTCACCAACATTGGCATAA                           | al., 2002                    |
| Nad5-Pr    | gene               | Texas Red – AGGATCCGCATAGCCCTCGATTTATGTG -<br>BHQ2 | Botermans et al., 2013       |

<sup>&</sup>lt;sup>b</sup> NaOAc 4 M solution is prepared by dissolving 328 g NaOAc in distilled water to 1,000 mL adjusted to pH 5.2.



| Name    | Target | Sequence (5' - 3') (fluorophores as an example) | Source                       |
|---------|--------|-------------------------------------------------|------------------------------|
| SqMV-F  |        | TAGGAATTTCTGGGCAGAGT                            | 1:                           |
| SqMV-R  | SqMV   | GGGCTGTACTTTCTAAGGG                             | Ling <i>et al</i> .,<br>2011 |
| SqMV-Pr |        | Texas Red – CAGCAGCTTGGAACTTATAATCCAAT - BHQ2   | 2011                         |

**Table I.3.** Types of controls used.

| Control type                         | Description                                                                                      |  |
|--------------------------------------|--------------------------------------------------------------------------------------------------|--|
| Internal amplification control (IAC) | Squash mosaic virus (SqMV) spike <sup>ab</sup> or                                                |  |
|                                      | Endogenous <i>nad5</i> plant gene                                                                |  |
| Positive amplification control (PAC) | ToMMV RNA or                                                                                     |  |
|                                      | ToMMV oligo DNA (oligonucleotide (single-stranded DNA) for all ToMMV target sequences) <i>or</i> |  |
|                                      | ToMMV cDNA                                                                                       |  |
| Positive process control (PPC)       | Tomato or pepper seed infected with ToMMV                                                        |  |
| Negative process control (NPC)       | Tomato or pepper seed free of ToMMV                                                              |  |
| Non template control (NTC)           | PCR mix free from any pathogen or seed                                                           |  |

<sup>&</sup>lt;sup>a</sup> The IAC also serves as inhibition control.

### 1. Extraction of the virus from the seed

Seed extracts and controls must be prepared at the same time, under the same laboratory conditions, and stored at 4 °C until the assay begins.

- 1.1. Add SqMV spike solution to the seed extraction buffer (Table I.1) as internal amplification control (IAC, Table I.3).
- 1.2. Dry grind three subsamples of 1,000 tomato seeds or six subsamples of 500 pepper seeds using Geno/Grinder or equivalent equipment. The grinding should produce a seed powder visually similar to Figure I.1. Include a PPC and NPC.



**Figure I.1.** Demonstration of ground tomato (A) and pepper (B) seed flours compared to unground seeds.

<sup>&</sup>lt;sup>b</sup> The spike solution is prepared by grinding 0.1 mg of *Squash mosaic virus* (SqMV) infected tissue which is homogenised in 50 mL PBS buffer. The extract is diluted to obtain a suitable concentration, and aliquots are stored at -80 °C. Other organisms such as *Dahlia latent viroid* (DLVd) or *Bacopa chlorosis virus* (BaCV) may also be used, but compatible with the ToMMV primers in a multiplex gPCR should be verified.



- 1.2.1. Optional: Centrifuge at minimum of  $5,000 \times g$  for 5 min to reduce the risk of cross contamination when opening the tubes with grinded seed flour.
- 1.3. Add 20 mL of seed extraction buffer (Table I.1) to each subsample of ground seed powder.

Note: Good results have been obtained with 12 mL seed extraction buffer for tomato (1,000 seeds) and pepper (500 seeds). Experimental data shows that 12 and 20 mL provide similar results (ISHI internal data).

- 1.4. Vortex and incubate for 30 45 min at room temperature.
- 1.5. Centrifuge the tubes briefly to collect residual liquid from the lid to reduce the risk of cross contamination.
- 1.6. Continue with RNA extraction (Section 2).

### 2. RNA extraction

- 2.1. Use at least 100 µL supernatant from each subsample for the RNA extraction.
- 2.2. Use the commercial RNA isolation kit such as RNeasy (Power)Plant Mini kit (Qiagen, Hilden Germany) for RNA isolation. Process the subsamples according to the supplier's instructions.
- 2.3. Eluate the RNA in 100  $\mu$ L elution buffer.
- 2.4. Use the eluted RNA for RT-qPCR using a commercial RT-qPCR kit.

Note: The RNA extraction has been validated with RNeasy (Power)Plant kit (Qiagen), MagMax Plant RNA isolation kit (ABI, Waltham MA, USA), Sbeadex kit (LGC, London, UK) and Maxwell RSC Plant RNA kit (Promega, Madison, WI). If a different RNA isolation kit is used, it is necessary to verify its performance.

# 3. Preparation of the RT-qPCR

3.1. Prepare the RT-qPCR mix with the components as described in Table I.4.

Note: Good results have been obtained by ISHI member laboratories with the RT-qPCR UltraPlex<sup>™</sup> 1-Step ToughMix (QuantaBio, Beverly MA, USA). If different RT-qPCR mixtures and amplification programs are used, it is necessary to verify their performance.

- 3.2. Use 5  $\mu$ L of the RNA sample as input for the qPCR.
- 3.3. For each run, include an NTC and at least one PAC (Table I.3) that gives a Cq value between 28 and 32.
- 3.4. Run the RT-qPCR according to the program presented in Table I.5.



Table I.4. RT-qPCR ToMMV mix.

| Component                           | Target                | Per reaction (in µL) | Final concentration   |
|-------------------------------------|-----------------------|----------------------|-----------------------|
| UltraPlex 1-Step ToughMix (4×)      |                       | 6.25                 | 1×                    |
| CaTa9 Fw (10 μM)                    | T 1400/               | 0.75                 | 0.3 μΜ                |
| CaTa9 Pr (10 μM)                    | ToMMV -<br>Replicase  | 0.50                 | 0.2 μΜ                |
| CaTa9 Rv (10 μM)                    | Replicase             | 0.75                 | 0.3 μΜ                |
| ToMMV2 <i>or</i> CSP1572 Fw (10 μM) | T 1 11 11 65          | 0.75                 | 0.3 μΜ                |
| ToMMV2 <i>or</i> CSP1572 Pr (10 μM) | ToMMV CP<br>and 3'UTR | 0.50                 | 0.2 μΜ                |
| ToMMV2 <i>or</i> CSP1572 Rv (10 μM) | and John              | 0.75                 | 0.3 μΜ                |
| Nad5 <i>or</i> SqMV F (10 μM)       |                       | 0.25 or 0.50         | 0.1 <i>or</i> 0.2 μM  |
| Nad5 <i>or</i> SqMV P (10 μM)       | IAC                   | 0.25 or 0.50         | 0.05 <i>or</i> 0.1 μM |
| Nad5 <i>or</i> SqMV R (10 µM)       |                       | 0.25 or 0.50         | 0.1 <i>or</i> 0.2 μM  |
| PCR grade water                     |                       | 9.0 or 8.25          |                       |
| Subtotal PCR-mix                    |                       | 20.00                |                       |
| RNA extract                         |                       | 5.00                 |                       |
| Total                               |                       | 25.00                |                       |

**Table I.5.** RT-qPCR conditions SE-qPCR.

| Step         | Temperature | Duration |  |
|--------------|-------------|----------|--|
| RT reaction  | 50 °C       | 10 min   |  |
| Denaturation | 95 °C       | 3 min    |  |
| 40 susles    | 95 °C       | 10 sec   |  |
| 40 cycles    | 60 °C       | 60 sec   |  |

# 4. Interpretation and decisions

Cut-off values must be established by each laboratory for their positive and internal amplification controls prior to the assay being used on routine samples. For recommendations on setting cut-off values, see <a href="Real-time-PCR">Real-time-PCR</a>, an 'indirect' test used for pre-screening in seed health methods.

For interpretation and decision making, the results from all primer sets need to be taken into account, see Table I.6. Test results are only valid when all included controls presented in Table I.3 give the expected results.

Note: When using *nad5* as IAC, the Cq values can vary between different seed lots due to heterogenous expression of this gene.



| Table I.6. Inter | pretation and | decision table | for the SE-qPCR. |
|------------------|---------------|----------------|------------------|
|------------------|---------------|----------------|------------------|

| СаТа9    | ToMMV2 or CSP1572 | IAC                     | SE-qPCR result          | Follow-up                                                                                                                                                                         |
|----------|-------------------|-------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Positive | Positive          | Positive or<br>Negative |                         |                                                                                                                                                                                   |
| Positive | Negative          | Positive or<br>Negative | ToMMV suspect seed lot  | Bioassay for confirmation on a new sample of seeds.                                                                                                                               |
| Negative | Positive          | Positive or<br>Negative |                         |                                                                                                                                                                                   |
| Negative | Negative          | Positive                | ToMMV negative seed lot | No follow up needed.                                                                                                                                                              |
| Negative | Negative          | Negative                | IAC failure             | Repeat extraction and/or RT-qPCR. In case of repeatable results, no conclusion can be given for this sample by SE-qPCR. Continue with ELISA and/or Bioassay on a new seed sample. |

# **REFERENCES**

- Botermans, M., van de Vossenberg, B.T.L.H., Verhoeven, J.Th.J., Roenhorst, J.W., Hooftman, M., Dekter, R., and Meekes, E.T.M. (2013). Development and validation of a real-time RT-PCR assay for generic detection of pospiviroids. *Journal of Virological Methods*, **187**, 43–50.
- Chen, L.F., Pannu, S., Koenraadt, H., Hiddink, G., Berendsen, S., Relevante, S., Delisle, J., Reuven, S., and Baldwin, T. (2025). Detection of Tomato mottle mosaic virus (ToMMV) in Tomato (Solanum lycopersicum) and Pepper (Capsicum spp.) by Seed Extract RT-qPCR (SE-qPCR). Validation report, International Seed Federation (ISF), Nyon, Switzerland. <a href="https://worldseed.org/our-work/seed-health/ishi-method-development-and-validation/">https://worldseed.org/our-work/seed-health/ishi-method-development-and-validation/</a>.
- Hiddink, G., Tavares, C., Beugelsdijk, D., Pannu, S., Geraats, B, Langens, M., and Ranganathan, R. (2019). Reliable detection and identification of *Tomato brown rugose fruit virus* (ToBRFV) and other tobamoviruses in seeds of *Solanaceae*. Poster presented at APS annual meeting.
- Ling, K.-S., Wechter, W.P., Walcott, R., and Keinath, A. (2011). Development of a real-time RT-PCR assay for *Squash mosaic virus* useful for broad spectrum detection of various serotypes and its incorporation in a multiplex seed health assay. *Journal of Phytopathology*, **159**, 649–656.
- Mehle, N., Vučurović, A., Bajde, I., Brodarič, J., Grausgruber-Groeger, S., Baldwin, T., Ziebell, H., Fox, A., Abu-Ras, A., Zeidan, M., Gershon, T., Koenraadt, H., Barnhoorn, R., Delmiglio, C., Thompson, J., Shneyder, Y., Karimova, E., Kaiser, M., Frapolli, M., Amato, M., Rivera, Y., Padmanabhan, C., Tiberini, A., Manglli, A., Grant, N., Webster, W., and Constable, F. (2024). ToMMV-detect 2022-A-394 Interlaboratory Test Performance Study. <a href="https://drop.euphresco.net/data/af730655-4022-4e87-a952-b94cfda3a971">https://drop.euphresco.net/data/af730655-4022-4e87-a952-b94cfda3a971</a>
- Menzel, W., Jelkmann, W., and Maiss, E. (2002). Detection of four apple viruses by multiplex RT-PCR assays with coamplification of plant mRNA as internal control. *Journal of Virological Methods*, **99**, 81–92.



- Rothman, J.A. and Whiteson, K.L. (2022). Sequencing and variant detection of eight abundant plant-infecting Tobamoviruses across Southern California wastewater. *Microbiology Spectrum*, **10**(6), e03040-22.
- Schoen, R., de Koning, P., Oplaat, C., Roenhorst, A., Westenberg, M, van der Gaag, D.J., Barnhoorn, R., Koenraadt, H., van Dooijeweert, W., Lievers R., Woudt, B., Pinto Tavares, C. and Botermans, M. (2023) Identification of Tomato mottle mosaic virus in historic seed accessions originating from France, the Netherlands and Spain, indicates a wider presence before its first description. *European Journal of Plant Pathology*, **166**, 485–489.